
Lexical Analysis

CS 4447 / CS 9545 -- Stephen M. Watt
University of Western Ontario

Reading

• Aho, Lam, Sethi, Ullman: Chapter 3

CS4447/CS9545

Lex, JFlex

• We will soon see the scanner generating tools Lex and JFlex

• How do they work?

CS4447/CS9545

Finite Automata Theory
Hinted at by JFlex

• If you look at the output of JFlex, you see
obelix[16]% jflex CScanner.lex
Reading "CScanner.lex"
Constructing NFA : 461 states in NFA
Converting NFA to DFA :
..
..
..

CS4447/CS9545

• What does this mean?

..

...
237 states before minimization, 212 states in minimized DFA
Writing code to "CScanner.java"
obelix[17]%

Regular Expressions, RegEx(Σ)

• Regular expressions on alphabet Σ = {a,b,c,…}

• Empty expression, ε

• Element of Σ, a

• Concatenation, αβ α, β  RegEx(Σ)

• Union, α|β

• Kleene Closure, α*

CS4447/CS9545

• Kleene Closure, α*

• Parentheses, (α)

Extra Regular Expression Syntax

• These are just shorthands and can be defined in
terms of the previous:

α+ α? α{n} α{n-m} α{n-}

! α (not α)

~ α (upto α)

• Context is useful in making scanners:

CS4447/CS9545

• Context is useful in making scanners:

^ $ <<EOF>>

α/β (α, but only if followed by β)

Start conditions

One Way of Looking at Regular Languages

• Input alphabet Σ, variable set V
• Set of regular definitions

d[1] → r[1]
d[2] → r[2]
…
d[n] → r[n]

• Each d[i] is a distinct element of V

CS4447/CS9545

• Each d[i] is a distinct element of V
• Each r[i] is a regular expression on

Σ U { d[1], d[2], …, d[i-1]}

Building an NFA from a Regular Language

• a  Σ becomes a two state NFA.
“a” gives a transition from the initial state to an accepting final
state.

• αβ becomes NFA for α, followed by an ε rule to the NFA for β.
The final states of the NFA for α are no longer final, and have ε
rules to the initial state of the NFA for β.

CS4447/CS9545

rules to the initial state of the NFA for β.

• α|β becomes a fork of ε rules to the NFA α and the NFA for β.

• α* becomes the NFA for α with an ε rule back to the beginning.
The initial state of the NFA becomes an accepting state, and all
the final states have an ε rule back to it.

Building an NFA for a Lex Specification

• Treat the Lex specification as a big union:

Rule1 | Rule2 | Rule3 | … | RuleN

CS4447/CS9545

Simulating an NFA (1)

•ε-closure(S), the set of states that can be
reached from the set of states S with ε transitions.

•move(S,a), the set of states that can be reached
from the set S with input “a”

CS4447/CS9545

Simulating an NFA (2)

S := ε-closure({s0})

a := nextchar();

while (a ≠ EOF) {
S := ε-closure(move(S,a));
a := nextchar();

}

CS4447/CS9545

}

return S ∩ F ≠ { }

NFA vs DFA: Space-Time Tradeoffs

• Regular expression r, size |r|

• Input string x, length |x|

• NFA Space O(|r |), Time O(|r | * |x|)

• DFA Space O(2^|r |), Time O(|x |)

CS4447/CS9545

NFA to a DFA: the Subset Construction

• Given N, an NFA, construct D, a DFA accepting the
same language.

• The states of D will correspond to sets of states of N.

CS4447/CS9545

The Subset Construction

DStates := { ε-closure({s0}) }; // unmarked
while there is unmarked T in DStates {

mark T;
for each input symbol a in Σ {

U := ε-closure(move(T,a));
if U not in DStates {

DStates := DStates union {U};// unmarked
}
DTransitions[T, a] := U;

CS4447/CS9545

}
DTransitions[T, a] := U;

}
}

DFA Minimization

• Each regular language is recognized by a minimal DFA,
unique up to state names.

• Use the idea of a string w distinguishing two states s and t :

Starting in s and reading w ends in accepting state, while
starting in t and reading w ends in non-accepting state,

CS4447/CS9545

starting in t and reading w ends in non-accepting state,
or vice versa.

Basic Idea

• Work with partitions of states
• Start with coarse partition: accepting states, and non-accepting

states.
• Split a partition if there is an input symbol that gives transitions

to different partitions.

• E.g. The partition P1 is split because input “b” gives transitions

CS4447/CS9545

• E.g. The partition P1 is split because input “b” gives transitions
from P1 →P1 and P1 →P2

P1 = {S1, S2}, P2 = {S3,S4}
(S1,a) → S1, (S2,a) → S1
(S1,b) → S1, (S2,b) → S3

DFA Minimization

1. Construct initial partition Π of two groups: accepting
states F, and non-accepting S-F

2. Form Πnew by splitting each group where there is an
input symbol that gives transitions to distinct groups

3. If Πnew = Π, let Πfinal = Π and goto step 4. Otherwise
repeat step 2 with Π := Πnew

4. Choose one state in each group of Πfinal as its
representative.

CS4447/CS9545

representative.
These are the states of the minimal DFA.
Form transitions based on transitions between groups.
The new start state is the representative of the group
containing the old start state.
The new final states are the representatives of the
groups containing old final states.

5. Remove dead states (non-accepting that have no
transitions to other states), and unreachable states.

